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It has been claimed that the particular numerical flux used in Runge-Kutta Discontinuous
Galerkin (RKDG) methods does not have a significant effect on the results of high-order
simulations. We investigate this claim for the case of compressible ideal magnetohydrody-
namics (MHD). We also address the role of limiting in RKDG methods.

For smooth nonlinear solutions, we find that the use of a more accurate Riemann solver
in third-order simulations results in lower errors and more rapid convergence. However, in
the corresponding fourth-order simulations we find that varying the Riemann solver has a
negligible effect on the solutions.

In the vicinity of discontinuities, we find that high-order RKDG methods behave in a sim-
ilar manner to the second-order method due to the use of a piecewise linear limiter. Thus,
for solutions dominated by discontinuities, the choice of Riemann solver in a high-order
method has similar significance to that in a second-order method. Our analysis of
second-order methods indicates that the choice of Riemann solver is highly significant,
with the more accurate Riemann solvers having the lowest computational effort required
to obtain a given accuracy. This allows the error in fourth-order simulations of a discontin-
uous solution to be mitigated through the use of a more accurate Riemann solver.

We demonstrate the minmod limiter is unsuitable for use in a high-order RKDG method.
It tends to restrict the polynomial order of the trial space, and hence the order of accuracy
of the method, even when this is not needed to maintain the TVD property of the scheme.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

To simulate compressible flows that contain shocks along with small-scale features such as turbulence, we require
numerical methods that are shock capturing, but also exhibit high-order accuracy and low numerical dissipation away from
shocks [1]. Runge-Kutta Discontinuous Galerkin (RKDG) methods are shock capturing and high-order accurate away from
discontinuities, thus they are a candidate method for carrying out such simulations.

Discontinuous Galerkin (DG) methods were first introduced by Hill and Reed [2] for the neutron transport equations
(linear hyperbolic equations). LeSaint and Raviart [3] proved a rate of convergence of O(Ax)* for general triangulations
and of O(Ax)"+1 for Cartesian meshes, where Ax is the element size and k is the polynomial order of the approximate solution.
In case of general triangulations, this result was then improved by Jhonson and Pitkaranta [4] to O(Ax)**'/2, which was

confirmed to be optimal by Peterson [5].
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These methods were then generalized for systems of hyperbolic conservation laws by Cockburn and co-workers [6-10]. In
space the solution is approximated using piecewise polynomials on each element. Exact or approximate Riemann solvers from
finite volume methods are used to compute the numerical fluxes between elements. Limiters are used to achieve non-
oscillatory approximate solutions, if they contain shocks [11]. For these reasons, DG methods can be seen as generalization
of finite volume methods to higher order. For time integration, the total variation diminishing (TVD) explicit Runge-Kutta
(RK) methods proposed by Shu and Osher [12] are used.

RKDG methods have many important advantages. Like finite element methods, RKDG methods are well suited for simu-
lating flows in complicated geometries. These methods can easily handle adaptivity strategies, because of the assumed dis-
continuity of the solution at element interfaces. This allows refining or unrefining of the triangulation to be done without
taking into account the continuity restrictions typical of conforming finite element methods. Similarly, the degree of the
polynomial approximation within an element can be changed without affecting the solution on other elements. Another
important advantage is that these methods are highly parallelizable because to update the solution on a given element, only
information from elements with which it shares a face is needed.

At present, it is believed that the particular numerical flux or Riemann solver used does not have a significant effect on the
results of high-order RKDG simulations [13]. Such a conclusion is supported by numerical evidence such as that shown in
Fig. 1. This figure shows the results of simulations of the MHD shock tube problem described in Section 4.1 with three dif-
ferent flux calculators (see Section 4 for descriptions), along with the exact solution to the problem. The results of first- and
second-order simulations are shown in Fig. 1(a) and (b), respectively. Comparing these results, it appears that the absolute
error in the numerical solution is far less sensitive to the choice of numerical flux when the second-order scheme is used.
This seems to indicate that as the order of a simulation increases, the choice of numerical flux becomes less significant. This
view has lead to the simple and highly dissipative Lax-Friedrichs (LF) flux being used within many RKDG methods [13]. Our
goal is to rigorously examine the effect of more accurate numerical flux calculators in high-order RKDG methods, with par-
ticular emphasis on high-order simulations featuring discontinuities. The influence of accurate flux calculators in high-order
RKDG methods is intimately tied to the performance of the limiters in the method. For this reason, we also examine the per-
formance of limiters in high-order simulations.

For the Euler equations, the effect of Riemann solvers has been previously evaluated by Qiu et al. [14]. One- and two-
dimensional numerical simulations were carried out to compare various Riemann solvers based on performance measures
such as numerical error, resolution of discontinuities and CPU times. The LF flux was shown to require the least CPU-time
among all the fluxes that were compared, but it also produced the largest numerical errors. Whereas second-order fluxes
such as Lax-Wendroff (LW) and Warming-Beam (WB) were found to be unstable. The Harten, Lax and van Leer (HLL)
[15], HLLC [16] and MUSTA [17] fluxes were proposed as good choices for RKDG simulations. However, the data generated
was not correlated to demonstrate which scheme is the most computationally efficient, or if the benefits of using more accu-
rate Riemann solvers are dependent on the order of accuracy. In addition, error norms were only computed for a smooth
linear problem, while we anticipate that the use of accurate Riemann solvers will be most significant in discontinuous non-
linear problems.

This report is organized as follows: in the next section we present the governing equations for the simulations. In Section
3 a brief description of the RKDG method is presented. In Section 4, a number of flux calculators for ideal MHD are tested,
leading to the selection of appropriate flux calculators for use in the RKDG method in different circumstances. The limiters
used within the RKDG method are described and tested in Section 5. The results of numerical test cases are presented and
analyzed in Section 6. Finally, the conclusions that have been drawn from this work are presented in Section 7.
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Fig. 1. Density profiles at t = 0.4 from (a) first-order and (b) second-order accurate simulations of the MHD shock tube problem described in Section 4.1.
The exact solution to the problem is shown along with numerical results using the LF, HLLE and Roe fluxes described in Section 4.
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2. Governing equations

The governing equations for the simulations presented here are the ideal MHD equations. These govern the evolution of a
quasi-neutral conducting fluid and the magnetic field within it, neglecting the magnetization of individual particles, the hall
current, ion slip and the time rate of change of the electric field in Maxwell's equations. The complete details of their
derivation may be found, for example, in Sutton and Sherman [18]. In the absence of viscosity, thermal conductivity,
electrical resistivity and interspecies diffusion, the ideal MHD equations are,

%+V-(pu):o (1)
p%—prJr—o(VxB)xB, 2)
p%<e+§u u):flulo(VxB) (uxB)— V- (pu), (3)
V.B=0, (4)
Z—f:Vx(uxB) 5)

Here, p is the density, p is the pressure, u is the velocity, B is the magnetic field, e is the internal energy per unit mass and u,
is the magnetic permeability of vacuum. It is convenient to normalize B by ,/fi,, thus eliminating p, from the system of
equations.
Egs. (1)-(5) can be written in conservation form as follows:
ou OF;(U)

ot (9Xj

o, (6)

where the vector of conserved variables U = U(x;, t) is,

U = {p, pu;, B;, per}",

and the flux vectors F;(U) are,
1 1 T
FJ(U) = {pllj, pu;l; + (p + inBk)é,‘j — B,‘Bj, lljB,‘ — ll,'Bj7 (,Oe'r +p+ inBk)Uj — Bj(Bkuk)} .

Here, per is the total energy per unit volume of the plasma. The plasma is assumed to be ideal with constant specific heats,
allowing the following equation of state to be used to close the set of equations:

1 1
per = '})%‘1 + jpukuk + jBkBk-

3. Runge-Kutta Discontinuous Galerkin method

For hyperbolic problems, solutions may be piecewise continuous, meaning that they are smooth in regions separated by
discontinuities. This behavior is mimicked by DG methods as they allow L? jumps at the boundaries of subdomains even for
operators of higher than first order. This allows any complete set of trial functions to be used to represent the solution on
each subdomain. This is not the case in the standard Galerkin formulation where for second-order operators, C° continuity
is required across subdomains. RKDG methods for systems of hyperbolic conservation laws were developed by Cockburn
et al. [6-10]. For completeness, we present the following brief account of their derivation.

3.1. Variational form

Consider a domain @ € R". Let us define a triangulation M of Q as a finite collection {E;}{Z,, m € N, of non-degenerate
polygons such that,

Q:U{Eiyi:1$~~~>m}7 (7)

E(E =0« i#], (8)
and for all i,j € {1,...,m}, i # J, the intersection E; N E; is either @ or a vertex, edge or face of both E; and E;. For two-dimen-
sional quadrilateral elements, we introduce a reference element > = [-1,1] x [-1, 1] and the mapping,

b E—-X (9)

that maps quadrilateral elements to the reference element. The mapping @ is a bilinear mapping.
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It is sufficient for us to consider the following generic scalar advection equation:

ou
—+V.F=0 10
ar * : (10)
where u is a conserved variable and F is the inviscid flux vector. The variational form used in the RKDG method is derived by
multiplying by the test function v and integrating over each element separately. After using integration by parts on the diver-
gence term, we obtain,

ou "

—vdx+ [ vn-F(u)ds— [ Vv-F(u)dx=0. (11)

JE at OE JE

The flux vector F(u) in the second term must be evaluated on the boundary of the element where u may be discontinuous
and thus has two possible values; u; on the interior of the element under consideration and u, on the exterior. To account for
this, we replace F(u) with the numerical flux function F(u;, u.), which can be computed taking upwind considerations into
account. The final variational from is derived by using integration by parts once more on the third term to eliminate the gra-
dient of the test function,

%/E uvdx+/af v(?(ui,ue)*F(ui))-nd5+'/EV-F(u)vdx:0. (12)

3.2. Basis functions

In the RKDG method, the unknowns and data within each element are expanded in terms of a suitable set of basis func-
tions ¢, (x);

f(&y) = Z Zapq¢pq(él7 52)
p q

Here, (¢4, ;) is a local coordinate system associated with that element. The RKDG method we use is based on the Nektar code
by Sherwin and Karniadakis [19]. The original code has been extended to include Runge-Kutta time stepping, slope limiters
and accurate Riemann solvers, amongst other features. We will refer to the modified version of the code as Nektar-m. The set
of polynomial basis functions used in Nektar was proposed by Dubiner [20] in two dimensions and extended to three dimen-
sions in [19]. The two-dimensional basis functions have the form,

Ppa(E1:E2) = Uy (&g (&),

for quadrilaterals and,

bpq(&1,82) = Ebg(m)l//gq(’?z)»

for triangles. The Cartesian coordinates ¢, ¢, are defined on the reference element as shown in Fig. 2, while 7,7, are non-
Cartesian and are given by,

1+f17
1-&

The functions () and lpﬁq(z) are,

’71:2 1, Ny =&

1-z

0.0 P 2p+1,0
o =R v - (57) e,

where P%* is the nth-order Jacobi polynomial with weights & and f. These basis functions are orthogonal in the Legendre
inner product over each element, resulting in a diagonal mass matrix. The functions are polynomial in both the Cartesian

5,

o

& g

Fig. 2. Reference element local coordinate system.
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and non-Cartesian coordinates. It was proved by Warburton and Karniadakis [21] that the coefficients of the basis functions
in a solution decay exponentially with polynomial order, thus the numerical solution converges exponentially as the max-
imum polynomial order of the approximation is increased.

3.3. Runge-Kutta time discretization

To advance solutions in time, the RKDG method uses a Runge-Kutta (RK) time marching scheme. In this manuscript we
present the results of second-, third- and fourth-order accurate RKDG schemes, thus we limit ourselves to presenting the RK
schemes used in these cases. For second- and third-order simulations, we use the TVD RK schemes of [22]. For fourth-order
simulations we use the classic scheme.

Consider the semi-discrete ODE,

Let u? be the discrete solution at time t", and let At" = t"*! — t". In order to advance a numerical solution from time t" to t"*!,
the RK algorithm is as follows:

1. Set u)? = ul.
2. Fori=1,...,k+1, compute,

i—

u) =" oqu) + pyAL'Ly (u}l’)).

T
o

3. Set u+! =y,

The values of the coefficients used in the TVD schemes are shown in Table 1.
For the linear advection equation, it was proved by [9] that the RKDG method is L*-stable for piecewise linear (k = 1)
approximate solutions if a second-order RK scheme is used with a time-step that satisfies,

c At 1
Ax =37
where c is the constant advection speed. The numerical experiments of [23] show that when approximate solutions of poly-

nomial degree k are used, an order k + 1 RK scheme must be used, which simply corresponds to matching the temporal and
spatial accuracy of the RKDG scheme. In this case the L*-stability condition is

AT
Ax T 2k+1°

For the nonlinear case, the same stability conditions are used but with c replaced by the maximum wave speed of the system.
3.4. Algorithm

Here we describe the RKDG algorithm as it is implemented in Nektar-m. The majority of the algorithm remains un-
changed from that presented in [21]. It utilizes two sets of quadrature points on element boundaries: The set of interface
quadrature points Q', where a Riemann solver is used to compute the numerical fluxes, and the set of edge quadrature points
QFf, where the fluxes must be evaluated to advance the solution in time. Q' corresponds to the Gauss quadrature points along
each edge, which do not include the vertices where there are no clearly defined left and right states that could be input to the
Riemann solver. The set QF depends on the type of elements used and typically includes the vertices. The basic steps in the
RKDG algorithm implemented in Nektar-m are as follows:

1. Read in the initial condition U(x,0) and evaluate it at all quadrature points, set n = 0.
2. Limit the solution to ensure that the method is total variation bounded (TVB) (see Section 5).

Table 1
Parameters for TVD Runge-Kutta time marching schemes.
Order o Bi
2 1 1
12 1/2 0 1/2
3 1 1
3/4 1/4 0 1/4
1/3 0 2/3 0 0 2/3
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3. Compute the numerical fluxes F, at Q' using a Riemann solver (see Section 4). At the domain boundaries, use the pre-
scribed boundary conditions as the exterior state that is input to the Riemann solver. Interpolate the resulting fluxes onto
QF. Scale the fluxes with the ratio of the edge Jacobian to the volume Jacobian. This increases the efficiency of the scheme
by allowing the fluxes to be added to the volume terms evaluated at the quadrature points (see [21] for details).

4. Compute the exact fluxes F at the element quadrature points. Utilizing the known gradients of the basis functions, V - F is
readily computed via a mapping.

5. Subtract F from F, at the appropriate quadrature points and add this to the result of step 4.

6. Determine the modal coefficients of the result of step 5 by evaluating its inner product with each orthogonal basis func-
tion. Evaluate the resulting polynomials at the element quadrature points and store the result in Uf.

7. Carry out the first sub-step of the RK time integration scheme:

UY = U, t") + B1oAtUF(x, 7).

8. Repeat steps 2-6 for the remaining sub-steps in the RK scheme.
9. Increment n by one and t" by At. Continue steps 2-9 until the desired simulation time is reached.

4. MHD Riemann solvers

Riemann solvers are essential components in finite volume (FV) or RKDG methods. The function of a Riemann solver is to
compute the flux across an interface that initially separates two uniform states:

U, x<c
U, x>c

U(x,0) = {

where ¢ € R. Such Riemann problems arise at the element boundaries of a computational grid at every time-step. In this con-
text Riemann solvers may also be referred to as flux calculators. In recent years a wide variety of Riemann solvers have been
developed for ideal MHD (see e.g. [24-29]). Due to the number of solvers available, selection of the optimal solver for a given
simulation is difficult. This issue was addressed by Wesenberg [24], who assessed the computational time required to reach a
fixed error bound for finite volume simulations of a suite of test cases using six different Riemann solvers. This was done for
both first- and second-order accurate finite volume schemes. Wesenberg concluded that his MHD-HLLEM was the cheapest
for achieving a fixed error bound. However, since the time of Wesenberg’s paper, several attractive new Riemann solvers of
the HLLC family have been developed for MHD [25-29]. Our goal here is to assess the performance of a selection these new
schemes so that we may select the best for a more extensive testing in high-order RKDG methods. In particular we will com-
pare the performance of the HLLC solvers of Li [27] (HLLC-L) and Gurski [28] (HLLC-G) with the HLLD solver of Miyoshi and
Kusano [29], the Lax-Friedrichs (LF) flux, an MHD Roe solver [30], the HLLE solver [15,31] and the MHD-HLLEM solver. We
will use a different test case to Wesenberg that more completely exercises the capabilities of the Riemann solvers. In addition
to being accurate and efficient, we must also consider the robustness of these Riemann solvers. This issue has been addressed
for a number of solvers by Gurski [32]. Physical solutions of the MHD equations possess a positivity preserving property such
that positive densities and pressures are always retained. However, non-physical negative densities and pressures can be
generated in numerical solutions. Thus it is important that the MHD Riemann solver selected leads to a positivity preserving
scheme. The HLLE and HLLC family of Riemann solvers have the additional benefit that they can be simply extended to the
case there the plasma is not an ideal gas, which is not the case with the Roe and HLLE-M solvers.

In this section we will first present the results of the test cases, then conclude with the selection of the optimal Riemann
solvers to use in certain situations.

4.1. Numerical tests

The primary test case we have selected to evaluate the Riemann solvers listed in the previous subsection is a shock tube
problem from Torrilhon [33]. This shock tube problem was selected as it includes all types of admissible MHD waves
(according to Falle and Komissarov [34]) within one solution: fast- and slow-mode rarefactions, rotational discontinuities,
fast shocks and slow shocks. Thus it will thoroughly exercise the wave resolving capabilities of the Riemann solvers. Torri-
hon’s shock tube problem is computed on the domain —1 < x < 1, 0 < t < 0.4 with the following initial conditions:

(3,3,0,0,0,1.5,1,0), x <0,

(p,p,u, v, W, By, By, B;) = { (1,1,0,0,0,1.5,c0s(1.5),sin(1.5)), x> 0.
The boundary conditions for the problem are extrapolated outflow at x = &1, and periodicity in y. This test case is computed
for an ideal plasma with y =5/3.

To facilitate comparison to published results (e.g. [24]), the Riemann solvers are tested within a standard finite volume
method. First-order simulations use piecewise constant reconstruction in space and forward Euler time-stepping with a CFL
number of 0.45. Second-order simulations use a MINMOD limited piecewise linear reconstruction in space and predictor-
corrector time-stepping. For this test case we assess the performance of the schemes via the L?>-norm of the error in the cell
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averages, which in this case gives a measure of the scheme’s overall ability to resolve discontinuities, and the CPU-time re-
quired to simulate the problem up until the final time, T = 0.4.

Fig. 3 shows an example of the results of this test case. It shows the final density profiles produced by first-order finite
volume simulations on a grid of 200 cells, along with the exact solution. Examining the density allows us to observe the
performance of the schemes in the vicinity of the contact discontinuity, where the velocity and magnetic field do not vary.
It does not, however, show the rotational discontinuities as these do not alter the density. In terms of resolution of dis-
continuities on a fixed grid, the Riemann solvers can be divided into three groups; the LF flux which is highly dissipative,
the Roe, HLLC, HLLD, and HLLE-M solvers which capture all the discontinuities reasonably well even on this coarse grid,
and the HLLE solver, which lies in between. In the first frame of Fig. 3, there appears to be little difference between the
most accurate group of solvers. The second frame shows the solutions around the slow shock in greater detail. This allows
us to see that the HLLD solution lies closest to the Roe solution, while the HLLE-M solution is even sharper (the shock is
smeared over fewer cells) than Roe solution around the slow shock, due to the action of the anti-diffusion terms in the
HLLE-M solver.

To assess the performance of the schemes more rigorously, we plot the L>-norms of the error in element average density
versus the computational effort (normalized CPU-time) in Fig. 4. Curves that lie lower on this plot require less computation
effort to reach a fixed error bound, and are therefore said to perform better. From Fig. 4 we see that the LF flux has the worst
performance, followed by the HLLE solver. The performance of the HLLC-L, HLLC-G, HLLD, HLLE-M and Roe solvers is very
similar, with HLLC-L and HLLE-M being the best for this performance measure at different resolutions, followed by HLLD,
Roe, then HLLC-G. These rankings appear to be reasonably independent of resolution. Note, however, that the error in density
does not assess the performance of the schemes around the rotational discontinuities, where we expect the HLLD and Roe
solvers to be superior. To address this problem, in Fig. 5 we present the L*-norms of the error in cell average B, versus the
CPU-time for the first-order simulations. From this figure, we see that for this performance measure the Roe, HLLE-M and
HLLD solvers are superior to the HLLC solvers, with the HLLE-M solver requiring the minimum computational effort to
achieve a given error bound.
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Fig. 3. Density profiles at t = 0.4 from first-order solutions of Torrilhon’s MHD shock tube problem on a grid of 200 cells using various Riemann solvers.
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Fig. 5. L>-error in element average B, versus normalized CPU-time for first-order simulations of Torrilhon’s MHD shock tube problem on grids of 50, 100,
200, and 400 elements using various Riemann solvers.

In Fig. 6, we plot error norms versus the computational effort for second-order accurate simulations. The ordering of the
schemes in terms of computational efficiency is mostly unchanged from the first-order results. The main exception is that
the performance of the Roe, HLLD, HLLE-M, and HLLC-L solvers is practically identical.

So far we have assessed the accuracy and efficiency of our set of Riemann solvers. The robustness of the Riemann solvers
is another important consideration. There are no known issues with the robustness of HLLE and HLLC-type Riemann solvers,
provided appropriate estimates for the signal speeds are used. There are however, multiple issues with the robustness of the
Roe solver. In addition to the fact that the solver is not guaranteed to be positivity preserving [31], in multiple dimensions it
has also been shown to produce what is known as the carbuncle phenomenon [35] when used to simulate shocks that are
nearly stationary on the grid.

From the results presented so far, the HLLE-M solver appears to be the optimal choice of solver as it is gives the lowest
error for a given computational cost. The source of the low error is the anti-diffusion terms in the solver. These cause the
numerical representation of the discontinuities in the solution to be more sharply resolved than when the other solvers
are used. This increased sharpness comes at a cost, however, as it results in the scheme being "over-compressive” which
can lead to oscillations in the vicinity of discontinuities. Such oscillations are seen in the results of second-order accurate
finite volume simulations, an example of which is shown in Fig. 7.

4.2. Selection of solvers

From the results presented in this section, the optimal choices of Riemann solver appears to be the MHD HLLD solver
of Miyoshi and Kusano [29] or the HLLC-L solver of Li [27]. These solvers exhibit high computational efficiency and have
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similarly low numerical dissipation to the Roe solver, but do not suffer from the same robustness issues. They are not as com-
putationally efficient as the MHD HLLE-M solver, in terms of the error in the magnetic field, but we observe that they do not
generate numerical oscillations around discontinuities that we see when the HLLE-M solver is used. Additionally, both solv-
ers have the property that they reduce to the Euler HLLC solver when the magnetic field vanishes, unlike the HLLC-G solver.
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The HLLD solver requires slightly less computational effort than HLLC-L to produce the same error in the magnetic field,
but the latter has the advantage that it is easier to implement. For this reason, we use the HLLC-L solver in our high-order
RKDG simulations. In Section 6 we examine the impact of using this accurate Riemann solver in such simulations, compared
to the LF flux.

5. Limiters

In order for the RKDG method to be stable in the nonlinear case, we require an entropy inequality and the uniform bound-
edness of the total variation of the discrete solution uy [23]. In general, a limiter function is required for the second condition
to hold. We present the limiter functions used in the RKDG method in the context of a one-dimensional nonlinear scalar
equation. In order for the total variation of the means to be non-increasing for a forward Euler time-step, the discrete solu-
tion must satisfy (see [23] for details):

Sign (U1 — 1) = SIgN(Pj,1/2 (Un|Ejr1) — Pyia/2 (UnlEp)), (13)
sign(i; — Uj_1) = sign (ujfﬂ/2 - uji]/z), (14)
sign(iljq — U;) = sign (uj*ﬂ/z - Uﬁ1/2)7 (15)

where #; is the average solution on element Ej, u;,,, denotes the limit of the solution at edge j + 1/2 taken from the left,
U/, denotes the limit of the solution at edge j + 1/2 taken from the right and,

_ At _ At
Pjs1j2(Un|Ejr) = 1 — mf* (“m/z) + Kjf (”ﬁl/z)
Here, At is the forward Euler time-step, A; is the size of E; and we assume that the flux can be written in the form,
F(a,b) =f*(a) +f(b),

which can be done for the Enquist-Osher flux, for example. There is no guarantee that the numerical solution will satisfy Egs.
(13)-(15), thus it is necessary to enforce them by means of what [23] refers to as a generalized slope limiter. These alter the
numerical solution on an element in such a way that Eq. (13)-(15) are satisfied, while preserving the element average of the
solution and, as far as possible, the accuracy of the method.

Following the presentation of Cockburn [23], we will first review TVDM generalized slope limiters for the one-dimen-
sional case, then show how these were modified to obtain schemes which are total variation bounded in the means (TVBM).
We will then present the extension of these limiters to the two-dimensional case.

5.1. One-dimensional TVDM generalized slope limiters

A simple set for sufficient conditions on u; that imply Eq. (13)-(15) are satisfied can be stated in terms of the minmod
function m,

m(al,...,an)_{

It can be easily shown (see e.g. [23]) that Eq. (13)-(15) are satisfied if, for all j = 1,...,N, we have,

s min [a,|, if s =sign(ay) = --- = sign(ay),

0, otherwise.

Uy =W = m(ufﬂ/z = Wy Uy — Ui, Ujgq — ﬂj), (16)

uj — ”jtl/z = m(aj - ujtl/zvﬂf — Uy, Ujy1 — aj)- (17)
In the following, let v, denote the numerical solution prior to limiting, and let IT, denote the limiter. Thus the limited numer-
ical solution is given by u; = II,(vy). For the case of piecewise linear approximate solutions,

wlE=9+&-x)v, j=1,...,N,
we can apply slightly modified versions of the limiter functions from finite volume schemes. The generalized slope limiter
based on the minmod limiter, IT}, is,

- , Uit — U U~ Ui

Llh‘Ej— UJ+(X—Xj)m<T/j,T7Tj . (18)
This satisfies Egs. (16) and (17). The modification to the standard minmod limiter is the additional input of v; into the min-
mod function. The minmod generalized slope limiter is equivalent to,

_ . _ o Vi= Vi Ui =0
uj+1/2:yj+m<vj+1/2—vj,f7f ; (19)

, , - U1 U1 - 0
Uy = 05— m(”f' - y]‘tl/27T7? . (20)
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Cockburn proposed the following less-restrictive (LR) slope limiter, I17, that also satisfies Eqs. (16) and (17):

_ Viy1 — Uj Uj— Vi
u|E: = v X —x;\m yQQ 21

h‘] ]+( ]) <] Aj/z ’ Aj/z ( )
Compared to the minmod limiter, the LR limiter permits larger values of the internal gradient on an element before limiting
occurs. As limiting decreases the accuracy of the solution on an element, this implies that use of the LR limiter will produce
more accurate results. The LR slope limiter is equivalent to,

Ui =0+ m(”ﬁl/z = U, U — V1, Uja — @')7 (22)
ujtl/z = i}j — m(i)j - 1/;:1/2, Dj - i/jq, i/]ur] — i/j). (23)
Both the minmod and the LR limiter are defined for piecewise linear solutions. They cannot be directly applied to solutions of

higher polynomial order as v}|E; is in general non-constant. Instead, the limiting procedure is broken into two stages: detec-
tion and truncation. To detect if an element requires limiting the following procedure is used [23]:

1. Compute uf, , and u;,, , using either Egs. (19) and (20) (minmod limiter) or Egs. (22) and (23) (LR limiter).

2. 1fur, , =0, , and u, , = vy, 0O limiting is required so set uy|E; = v, |E;, otherwise carry out the truncation stage.
In the truncation stage, we set uy|E; equal to a limited lower order polynomial that satisfies Eqs. (16) and (17). The simplest
procedure is limiting to a piecewise constant by setting u|E; = 7;. We refer to this as the first-order limiter. The second-order
limiter results from truncating u, |E; to a piecewise linear function that satisfies Eqs. (16) and (17). Following [23], this is done
by applying Eq. (18) or Eq. (21) to the P' part of the solution,

1
v = Z Vi (%)
=0
Thus uy|E; = I (v}) or uy|E; = I (v}). It is important to note that this is more accurate than, for example, direct use Eq. (21)

T
withm <% , %) as the first argument to the minmod function, which uses quantities already computed in the detec-

tion phase. The reason for this is that if limiting is needed due to the high-order modes only, then limiting »} will allow the
original P! part of the solution to be preserved, while using the differences computed in the detection step will not.

5.2. One-dimensional TVBM generalized slope limiters

At local extrema, the solution is non-monotone thus any limiter based on the minmod function will limit the solution to a
piecewise constant no matter how smooth the solution is. This results in a loss in accuracy at local extrema. Following [36],
this can be avoided by replacing the minmod function in the limiters with the TVB corrected minmod function m which is
defined as,

. {m, if |a1] < MAX?,
m(a17~~~7an):

m(ay,...,a,), otherwise,

where M is a constant that is an upper bound for the absolute value of the curvature of the solution at local extrema. In this
work, we take M = 50.

Provided that the value of M is appropriate, the scheme will not suffer from loss of accuracy at local extrema. The penalty
for this is that the scheme is no longer TVD. It can, however, be shown to be total variation bounded in the means (TVBM)
[36]. Moreover, provided the CFL condition is satisfied and coefficients o; from the Runge-Kutta scheme are nonnegative and
satisfy,

—_

i—

o =1,

T
1S

then it can be shown to solutions produced by the RKDG scheme converge in the nonlinear case [23].
5.3. Two-dimensional TVBM generalized slope limiters

To extend the generalized slope limiters presented in the previous subsections to the multi-dimensional case, [10] relies
on the assumption that spurious oscillations are present in uy, only if they are present in its P! part, u}. Thus if,
u} = Myuj, (24)

indicating that limiting is not required for u}, then it is assumed that that no limiting is required for the full solution uj,
hence,
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Fig. 8. Density profiles from Torrihon’s MHD shock tube problem at t = 0.4 from RKDG schemes using the HLLC-L flux solver and the LR limiter. Results are
compared for the following cases: the necessity of limiting is detected using the P; projection of the solution; the necessity of limiting is detected using the

difference between the element mean and edge mean values.

Iyuy = up

Conversely, if limiting is required for u}, the solution is truncated to the limited P' part,

1
Iyuy, = Hyuy,.

This approach has the drawback that it does not reduce to the one-dimensional scheme if the multi-dimensional scheme is
applied to simulate a one-dimensional problem. In fact Eqs. (16) and (17) are not guaranteed to be satisfied if only the P! part
of the solution is used to detect where limiting is required. To demonstrate the implication of this (that the scheme is not
TVD), in Fig. 8 we compare simulations of Torrilhon’s MHD shock tube problem using the proposed multi-dimensional lim-
iter and a scheme that does reduce to the one-dimensional LR limiter described above. We clearly see the appearance of spu-

rious oscillation when only the P! part of the solution is used to detect where limiting is required.

The multi-dimensional limiter that we have utilized for rectangular discretizations uses Eqs. (22) and (23) in each direc-
tion to detect whether limiting is required, with the exception that the point values at edges are replaced by edge average
values. This has the advantage that it reduces to the one-dimensional scheme if it is used to simulate a one-dimensional

problem. In detail, we compute,

Ui g = Vij — m(@u = Ui 1y, Vij = Vij1, Viji —
U125 = Vij + m(Bijrl/z.j = Vij, Vij — Vicy, Vi

U= Vij— m(Du = Ulayaj Uij = Vicrjs Vinaj

i _ 7 o _ ¥ e _
U0 = Ve Wi = Vi Ui = Viajpg

uh\EU = Z/h|EiJ.

Uijrrjp = Vij + m(vfjﬂ/z = Yijs Vij = Vij-1, Vija

Vij

and ;"

yi,} ’

)
)
)

vij ),

1_/1‘,/') )

- e .
12§ = Vi1 We assume that no limiting is required so,

Otherwise uy|E;; is set to the limited P' part of vp|Ei;. This is computed by setting,

Ujj = vy,
s _ _ _
Uy = M(Vy, Vij — Vij-1, Vijs1 — Vij),
0 _ _ _
Uy = M(Vy, Vij — Vi1j, Vinj — Vij),

for Ei i
6. Numerical results

6.1. Simple wave problem

(25)
(26)
(27)
(28)

—~ o~
w W N
- O ©
—_ = =

Landau and Lifshitz [37] present an exact, non-linear smooth solution to the one-dimensional Euler equations (no mag-

netic field). The solution only exists if the initial conditions satisfy the following relations:
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2

_ (7 = D\
pix.0) = po 1+ 1)
- (7 = Due\
P(X70)—po<1+27(10> ,

uy=u,=B,=B,=B,=0.

The particular case we utilize has the initial velocity,

Uuy(x,0) = ug sin 7x,

on the domain —1 < x < 1 with the boundary condition u(1, t) = u(—1, t). The exact solution is initially smooth, but the sinu-
soidal waves steepen nonlinearly until a shock develops at ts,.q, and the exact solution breaks down. The fact that the solu-
tion is smooth prior to ts,,q implies that the numerical methods we are interested in testing should reproduce the solution to
their theoretical order of accuracy, even though this is a nonlinear problem. This is not the case with any solution that
involves discontinuities, such as a shock tube problem, because around discontinuities these methods revert to first-order
accuracy. The existence of an exact solution to the Euler simple wave problem allows us to study the convergence of RKDG
schemes for a nonlinear problem. We will examine the results at t = 0.9, somewhat prior to the formation of a shock at
t ~ 0.95.

In Fig. 9, the solution from limited second-order simulations are compared to the exact solution. The HLLC-L Riemann
solver was used for both simulations. During the simulation, the less-restrictive (LR) limiter did not detect that any limiting

0.25 T T T T
—— O(2) LR Limiter
02t — = = 0(2) Minmod Limiter |
-~ Exact Solution
0151 * 20xError LR |

20xError Minmod

o
T

o

1=}

5
T

=)

Density-1, p—1

-0.05F

-0.1F

-0.151

-02 I I I I I L
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Distance, x

Fig. 9. Solutions from second-order simulations of the Euler simple wave problem. The HLLC-L flux solver was used in all simulations shown. Twenty times
the absolute error in each numerical solution is also plotted.

L2-error in p
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107 ——0O(3) HLLC-L LR (n=3.07)
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—&—0O(4) HLLC-L LR (n=3.98)

107} ——O(4) LF LR (n=3.99) 1
(4) HLLC-L Minmod (n=1.16)

Number of Elements, N

Fig. 10. [?-errors in element average density versus N for the Euler simple wave problem at t = 0.5. The least-squares fitted order of convergence, n, for
each scheme is indicated in the legend.
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Fig. 11. Numerical solutions to Torrilhon’s Riemann problem at t = 0.4 using second- and third- and fourth-order RKDG schemes. The HLLC-L flux solver
was used in all simulations other than one. A fourth-order result using the LF flux is shown for comparison. The L?-error in the element average densities for
each simulation is also indicated in the legend.
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Fig. 12. Distribution of limited elements in solutions to Torrilhon’s MHD Riemann problem at t = 0.4 from second-order RKDG schemes. The HLLC-L flux
solver was used along with the minmod (top) and LR (bottom) limiters.
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was required, thus it is unnecessary to show a separate curve for an unlimited simulation. On the other hand the minmod
limiter detected that limiting was required on the majority of elements. This indicates a major short-coming of the minmod
limiter for high-order simulations: The minmod limiter selects the input gradient with the minimum modulus. If this is not
the gradient of the polynomial representation of the field internal to the element, then limiting is carried out and the coef-
ficients of the higher order modes are set to zero. In the RKDG method, the input gradients are the internal gradient, and
slope estimates based on the difference between the element average fields and the average fields on the adjacent elements.
In general, if the solution has a finite curvature, the internal gradient will not have the minimum modulus, thus the solution
will be limited and will revert to (at most) second-order accuracy. This will occur even if limiting is unnecessary, as is the
case with the solution we are currently examining. From this we must conclude that the minmod limiter is unsuited for use
in a high-order RKDG method. Examining the numerical solutions shown in Fig. 9, we see that the LR limited solution
approximates the exact solution very well, while the minmod limited solution slightly under-predicts the peak value.

In Fig. 10, we show how the L?-error in element average density converges with N for various RKDG schemes. The least-
squares fitted order of convergence for each scheme is indicated in the figure legend. Note that in these simulations, the LR
limiter does not detect that any limiting is required, so there is no need to present separate LR limited and unlimited results.
The solutions from the LR limited third- and fourth-order RKDG schemes converge at the expected rate. On the other hand,
the results from the minmod limited fourth-order RKDG scheme show an order of convergence of between one and two. This
is due to the solution being limited to piecewise linear or piecewise constant on the majority of elements, once again high-
lighting the short-comings of this limiter.

To investigate the importance of using accurate Riemann solvers in high-order schemes, in Fig. 10 we compare the con-
vergence of solutions from LR limited third- and fourth-order RKDG schemes using LF and HLLC-L Riemann solvers. For the
third-order scheme, the solutions produced using the HLLC-L solver have lower errors and converge more rapidly, as might
have been anticipated from our low-order results. However, for the fourth-order scheme the errors in the LF and HLLC-L re-
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Fig. 13. Distribution of limited elements in solutions to Torrilhon’s MHD Riemann problem at t = 0.4 from third-order (top) and fourth-order (bottom)
RKDG schemes. The HLLC-L flux solver was used along with the LR limiter.
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sults are indistinguishable on the scale of the plot for all discretizations used. This shows that high-order accurate solutions
to the simple wave problem are insensitive to the choice of Riemann solver over a broad range of resolutions, supporting the
view of Cockburn and Shu [13], at least for smooth solutions.

6.2. Behavior of limited solutions for problems dominated by discontinuities

To investigate the effect of low-order limiting and accurate Riemann solvers in problems dominated by discontinuities,
we compare numerical solutions to Torrilhon’s MHD Riemann problem from second-, third- and fourth-order RKDG
schemes. These are shown in Fig. 11. Let us first examine the impact of the Riemann solver on solutions from the LR limited
fourth-order scheme. When the LF flux is used the L*-error in the element average density is 0.0220. Using the more accurate
HLLC-L solver, this error is reduced to 0.0172, which is significant. This is in contrast to our earlier results for smooth solu-
tions indicates that when discontinuities are present, the choice of Riemann solver is still significant for high-order methods.
The reasons for this will become clear by the end of this discussion.

We now turn our attention to the results of differing order produced using the HLLC-L solver. From Fig. 11, we observe
that the solution from the third-order scheme is the least accurate overall, with an L?>-error in the element average density of
0.0272. The behavior of the second- and fourth-order LR limited schemes is similar, other than in the vicinity of the contact

Fig. 14. Density distribution at t = 0.8 from a second-order finite volume scheme on a 256 by 256 cell regular mesh (top) and a fourth-order RKDG scheme

on a 64 by 64 element regular mesh (bottom). The HLLC-L flux solver was used along with the LR limiter in the RKDG scheme. The same contour levels are
used in both plots.
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discontinuity where the second-order scheme is more accurate. This results in the error in the solution from the fourth-order
scheme (0.0172) being greater than that from the second-order scheme (0.0138). Both of these two solutions are more accu-
rate than that from the minmod limited second-order scheme, which has a error of 0.0188.

The reason why we do not observe an increase in accuracy as the order of the scheme is increased, and why the LR lim-
iting procedure results in more accurate solutions, can be explained by examining where the limiter functions alter the poly-
nomial order of the solution. For t = 0.4, this is shown in Fig. 12 for LR and minmod limited second-order RKDG schemes, and
in Fig. 13 for LR limited third- and fourth-order RKDG schemes. From Fig. 12, we see that in the second-order solution, the
minmod limiter carries out limiting on almost all elements where the solution is non-constant, resulting in 117 of 200 ele-
ments being limited. The LR limiter limits far fewer elements, 32 of 200 in this example, mostly those on the edge of discon-
tinuities. This results in the minmod limited solution being more diffuse than the LR limited solution, as can be seen in
Fig. 11, and therefore less accurate, as the L*-errors revealed. From Fig. 13, we see that 43 and 56 elements are limited to
lower order polynomials in the solutions from the LR limited third- and fourth-order schemes, respectively. Also, the unlim-
ited elements are in general located where the solution is close to linear, so that a higher-order representation of the data has
little impact on the overall accuracy of the solution. The cumulative result is that the error caused by additional limiting out-
weighs any gain in accuracy due to the increased order of the scheme, resulting in the third- and fourth-order schemes pro-
ducing less accurate solutions than the LR limited second-order scheme. For this discontinuity dominated problem, these
results indicate that if elements are limited to a maximum polynomial order of one, and the overall scheme is at least sec-
ond-order accurate, then the L*-error in the solution is influenced more by the extent to which the solution must be limited
than by the order of accuracy of the scheme.

The remaining issue to be addressed from the results shown in Figs. 12 and 13 is why the third-order scheme produces
the solution with the largest L>-error in element average densities. The reason appears to be that the limiter function inter-
acts poorly with the piecewise quadratic representation of the data, in that it limits the data to be piecewise constant on a far
greater number of elements than for the other schemes, which locally reduces the order of the scheme to one. It is important
to note that the distributions of limited elements shown in Fig. 13 are instantaneous. These distributions change significantly
with time. In particular, the third-order scheme was observed to require limiting on a far greater number of elements after
the first and second sub-steps of the RK scheme than after the third and final sub-step, which is what we see in Fig. 13. For
example after the second sub-step at t = 0.4, the solution is limited to piecewise constants on 27 elements and piecewise
linear functions on 29 elements. The fact that the scheme is reduced to first-order on this number of elements results in
the solution it produces being less accurate than even the second-order minmod limited solution.

In conclusion, for high-order RKDG simulations of Torrilhon’s MHD Riemann problem, the polynomial representation of
the data is limited to be at most piecewise linear around the discontinuities. The remaining elements where the represen-
tation is piecewise quadratic (for third-order) or cubic (for fourth-order) lie in regions where the exact solution is linear and
would thus be represented equally well by a lower-order function. This implies that, at best, a high-order RKDG scheme will
behave in the same manner as a second-order scheme for the problem studied here. The only remedy for this would be to
develop a limiter function that produces higher-order limited polynomials. Our results imply that for any problem featuring
discontinuities, the error in a solution produced by a high-order RKDG method is likely to be dominated by the low-order
errors in the vicinity of the discontinuities. Such errors have been show to be significantly reduced by the use of accurate
Riemann solvers in Section 4.1. This explains the improved performance of the fourth-order scheme when the HLLC-L solver
was used instead of the LF flux.
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Fig. 15. Density profiles at t = 0.8, y = m from a second-order finite volume scheme on a 256 by 256 cell regular mesh and a fourth-order RKDG scheme on
a 64 by 64 element regular mesh. The HLLC-L flux solver was used along with the LR limiter in the RKDG scheme.
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6.3. Orzag-Tang vortex

To verify that our findings hold in multiple dimensions, we examine simulations of the Orzag-Tang vortex [38], a com-
monly used multi-dimensional test case for ideal MHD solvers (see e.g. [39,29]). The problem is very cleanly defined with
periodic boundary conditions in both directions. The domain for this test caseis 0 < x, y < 27w, 0 < t < 7, and the initial con-
ditions are,

(p,p,u, v,w,By, By, B,) = (y*,7, — siny,sinx, 0, — siny, sin 2x, 0).

The problem is solved for an ideal plasma with y =5/3.

We present solutions from fourth-order RKDG simulations using the LF and HLLC-L fluxes, along with a high resolution
reference solution. The RKDG simulations were run on a relatively coarse regular grid of 64 by 64 elements. The method of
Powell et al. [40] is used to control divergence errors in the magnetic field. The high resolution reference solution is required
because an exact solution to this test case does not exist. It was produced using a second-order accurate finite volume
scheme on a 256 by 256 cell regular grid. The finite volume scheme was developed by Samtaney [41] and uses the 8-wave
upwinding formulation of Powell et al. [40] within an unsplit upwinding method [42]. The solenoidal property of the mag-

Fig. 16. Density distribution at t = 7 from a second-order finite volume scheme on a 256 by 256 cell regular mesh (top) and a fourth-order RKDG scheme on
a 64 by 64 element regular mesh (bottom). The HLLC-L flux solver was used along with the LR limiter in the RKDG scheme. The same contour levels are used
in both plots.
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Fig. 17. Density profiles at t = m, y = m from a second-order finite volume scheme on a 256 by 256 cell regular mesh and a fourth-order RKDG scheme on a
64 by 64 element regular mesh. The HLLC-L flux solver was used along with the LR limiter in the RKDG scheme.

netic field is enforced at each time step using a projection method. A constrained transport step is then used remove diver-
gence modes with a centered finite difference representation. This uses the formulation prescribed by Toth [43].

During the early development of the vortex, the flow is smooth and limiting is not required. Fig. 14 shows density fields
from the RKDG and reference solutions at t = 0.8, when the solution is still smooth. Only one RKDG solution is shown as the
difference between them is negligible. From Fig. 14 we see that there is excellent agreement between the RKDG and refer-
ence solutions, indicating that the method performs well when limiting is not required. To show the differences between the
solutions more clearly, we show the density profiles along the line y = 7 in Fig. 15. The only visible deviation of the lower
resolution RKDG simulations from the reference solution is a slight under-prediction of the peak density. The RKDG results
using the LF and HLLC-L fluxes cannot be distinguished on the scale of this plot. This indicates that as in one-dimension, the
results or high-order RKDG simulations of smooth solutions are insensitive to the choice of Riemann solver.

Fig. 16 shows density fields at t = 7 from the RKDG simulation that used the HLLC-L flux and the reference solution. By
this time, the flow has evolved into a complex state featuring numerous discontinuities. At this stage there is a need for
extensive limiting, with approximately 37% and 33% of the elements being limited in the RKDG simulations using the
HLLC-L and LF fluxes, respectively. Comparing the reference solution and the RKDG solution shown in Fig. 16, it can be seen
that the while the overall shock structure is the similar in both simulations, the RKDG result is far more diffuse. In fact many
of the fine scale features are not adequately resolved. To show this more clearly, we show the density profiles from all sim-
ulations along the line y = 7 in Fig. 17. From the figure we see that the RKDG solutions fail to capture the sharp peaks in
density, along with the sharp trough in the center of the domain. This is due to the extensive limiting causing the scheme
to revert to at most second-order accuracy in these regions around the discontinuities. As for the one-dimensional discon-
tinuous flows studied in the previous subsection, the choice of Riemann solvers now significantly affects the RKDG solutions.
From Fig. 17 it can be seen that the more accurate HLLC-L solver allows the scheme to better resolve the features in the cen-
ter of the domain.

7. Conclusions

To investigate the importance of accurate Riemann solvers in RKDG simulations, we examined the results of first-,
second-, third-, and fourth-order simulations of both smooth and non-smooth problems. In the presence of discontinuities,
the influence of Riemann solver selection is directly tied to the performance of limiters. Thus we also examined the
performance of common limiters in these simulations. It was noted that a particular extension of one-dimensional limiters
to multiple dimensions can result in the TVD condition being violated.

We first examined the computational efficiency of several recently developed MHD Riemann solvers, in terms of the com-
puting time required to achieve a fixed error bound for a given problem. The performance of these solvers was compared to
that of the Roe solver, the LF flux and the MHD HLLE-M solver, which had previously been identified as the most efficient by
Wesenberg [24]. This was done for first- and second-order schemes. We find that all of the accurate Riemann solvers are
more computationally efficient than the LF flux, with the HLLE-M, HLLC-L, HLLD and Roe solvers exhibiting similar efficiency.
The HLLD and HLLC-L solvers were identified as good candidates for use in high-order simulations as of the most efficient
group of solvers, these have the most desirable robustness properties.

From our third- and fourth-order results for smooth solutions, we conclude that the minmod limiter is unsuited for use in
high-order RKDG methods. The reason for this is that in regions of finite curvature, this limiter tends to restrict the polyno-
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mial order of the trial space, reducing the scheme to at most second-order accuracy, even when limiting is not strictly re-
quired to keep the scheme TVD. The less-restrictive limiter does not exhibit this behavior. For third-order simulations of
smooth problems, we find that using the HLLC-L solver results in lower errors and faster convergence than when the LF flux
is used. However, for fourth-order simulations of the same problem, we observe negligible differences in the solutions when
the Riemann solver is varied. This supports the view of Cockburn and Shu [13] that the results of high-order RKDG simula-
tions are insensitive to the choice of Riemann solver, at least for smooth solutions.

From our simulations of problems dominated by discontinuities, we find that in the vicinity of discontinuities, high-order
RKDG methods behave in a similar manner to the second-order method due to the use of a piecewise linear limiter. The error
in numerical solutions to such problems is dominated by the error in these regions. Thus, for such solutions, the choice of
Riemann solver used in a high-order method has a similar significance as for a second-order method. Our analysis of sec-
ond-order methods indicates that the choice of Riemann solvers is very significant, with the more accurate Riemann solvers
having the best performance. This results in fourth-order simulations of discontinuous solutions using the HLLC-L solver
having considerably lower error than those using the LF flux, in contrast to the result for smooth solutions.
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